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Abstract

Data parallel languages such as Vienna Fortran and HPF can be successfully applied to
a wide range of numerical applications. However, many advanced scienti�c and engineering
applications are of a multidisciplinary and heterogeneous nature and thus do not �t well into
the data parallel paradigm. In this paper we present new Fortran 90 language extensions to �ll
this gap. Tasks can be spawned as asynchronous activities in a homogeneous or heterogeneous
computing environment; they interact by sharing access to Shared Data Abstractions (SDAs).
SDAs are an extension of Fortran 90 modules, representing a pool of common data, together with
a set of methods for controlled access to these data and a mechanism for providing persistent
storage. Our language supports the integration of data and task parallelism as well as nested
task parallelism and thus can be used to express multidisciplinary applications in a natural and
e�cient way.
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1 Introduction

Data parallel languages, such as High Performance Fortran (HPF) [?] and Vienna Fortran [?, ?],

are maturing and can readily express the parallelism in a broad spectrum of scienti�c applications.

In this sense, data parallel languages have proven highly successful.

However, scienti�c and engineering applications are a moving target. With the anticipated

arrival of tera
op architectures, the complexity of simulations being tackled by scientists and en-

gineers is increasing exponentially. Many of the new applications are multidisciplinary: programs

formed by pasting together modules from a variety of related scienti�c disciplines. Such multi-

disciplinary programs raise a host of complex software integration issues, in addition to parallel

performance issues. HPF, and its siblings, are completely inadequate for this class of applications.

Environmental simulation is one area in which such applications are beginning to arise. One

might wish to couple a variety of environmental models, each given initially as separate programs:

1. A plant biology model for the Florida Everglades

2. A model of the gulf stream dynamics

3. A climate model for North America

4. A solar radiation model

The goal is then to interconnect these disparate models into a single multidisciplinary model sub-

suming the original models and their interactions. At the same time, the parallelism both within

and between the discipline models needs to be exposed and e�ectively exploited.

Precisely analogous issues arise in multidisciplinary optimization. In designing a modern air-

craft, for example, one has a wide variety of interacting disciplines: aerodynamics, propulsion,

structural analysis and design, controls, and so forth. An optimal engineering design is necessarily

an admixture of suboptimal designs in each discipline. The essential goal is to correctly couple a

sequence of complex scienti�c and engineering programs from di�erent disciplines, each designed

and implemented by di�erent groups, into a coherent whole capable of e�ective multidisciplinary

optimization. Moreover, the collection of programs chosen must remain 
exible, since the choice

of programs tends to evolve rapidly as the simulation methodology changes, or as unanticipated

interactions force alteration of the mix of disciplines or programs being used.

In attempting to carry out such multidisciplinary design, scientists are confronted with a host of

complex software engineering issues, together with the necessity of e�ectively mapping the resulting

unwieldy codes to a heterogeneous network of workstations and massively parallel architectures.

In this environment, statically forming a \task graph" and coupling tasks via message plumbing

appears virtually unworkable. In a message-passing environment, the design of each task requires
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intimate knowledge of the behavior of all coupled tasks. Given a rapidly evolving mix of program

modules, as will occur in many multidisciplinary applications, a more 
exible software environment

appears critical.

Our approach is designed to address this problem. It provides a software layer on top of

data parallel languages, designed to address both the \programming in the large" issues, and the

parallel performance issues arising in complex multidisciplinary applications. A program executes

as a system of tasks which interact by sharing access to a set of Shared Data Abstractions (SDAs).

SDAs generalize Fortran 90 modules by including features from both objects in object-oriented data

bases and monitors in shared memory languages. The idea is to provide persistent shared \objects"

for communication and synchronization between large grained parallel tasks, at a much higher level

than simple communication channels transferring bytes between tasks.

Tasks in our system are asynchronously executing autonomous activities to which resources

of the system are allocated. They may embody nested parallelism, for example by executing a

data parallel HPF program, or by coordinating a set of threads performing di�erent functions on

a shared data set. Moreover, the system of tasks associated with an application may execute in a

homogeneous or heterogeneous environment.

A set of tasks may share a pool of common data by creating an SDA of appropriate type, and

making that SDA accessible to all tasks in the set. Using SDAs and their associated synchroniza-

tion facilities also allows the formulation of a range of coordination strategies for these tasks. The

combination of the task and SDA concepts should form a powerful tool which can be used for

the hierarchical structuring of a complex body of code and a concise formulation of the associated

coordination and control mechanisms.

The structure of this paper is as follows. The next section provides an overview of task man-

agement, while Section ?? presents the data abstractions required for sharing data between the

tasks. Section ?? describes a multidisciplinary application, the optimal design of an aircraft, and

shows how it would be programmed using the language features described in this paper. This is

followed by a section on related work and a brief set of conclusions.

2 Tasks

Tasks are spawned by explicit activation of task programs. A task program is syntactically sim-

ilar to a Fortran subroutine (except for the keyword TASK CODE which is used instead of

SUBROUTINE ) but has a di�erent semantics: di�erent tasks execute asynchronously and inde-

pendently as long as they are not synchronized. A task terminates if its execution reaches the end

of the associated task program code, or if it is explicitly killed. A task exists during its lifetime,
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which is the period of time between spawning and termination.

The interface between a task and its environment is de�ned by the arguments passed to the

task and the structure of the associated SDAs. All arguments of a task except for status variables

must have intent IN. Common blocks and modules cannot be shared between tasks: in particular,

the spawning of a task creates a task-speci�c instance of every common block in the task program,

and a task has no access to objects belonging to a common block associated with its parent. The

semantics of modules is de�ned similarly.

Tasks are units of coarse-grain parallelism executing in their own address space and operating

on a set of system resources allocated to them at the time of their spawning, such as machines and

their associated processors, memory modules, and �le space. The spawning statement may contain

an explicit resource request { it is then the system's responsibility to allocate su�cient resources

to satisfy this request { or it may let the system decide the resource requirements.

2.1 Task Spawning

A task is created by executing a spawn-statement. The spawn statement identi�es the task program

to be executed, together with an optional argument list and resource request:

SPAWN taskprogram-name [\(" argument-list\)"] [ ON resource-request ]

The execution of a spawn statement

� creates a new task,

� passes a list of arguments to the task,

� allocates resources to the task,

� returns a unique integer value, the task identi�cation�, and

� initiates the execution of the task program.

The task in which the spawn statement is executed is called the parent of the newly created

task. The intrinsic function SELF yields the identi�cation of the executing task.

The argument list may specify status variables that provide the user with information concerning

the success or failure of the spawning operation. If a spawn-statement fails (for example, because

its resource request cannot be met), its e�ect is empty, except for possible implicit assignments to

status variables which indicate the cause of the failure by returning an error code.

All other arguments speci�ed in a spawn statement must be of intent IN.

In the following, we will assume that the spawn statement is executed successfully, if nothing

to the contrary is said. The newly-created task will be denoted by T .

�This value can be assigned to an integer variable and used in task expressions (see Section ??) to gain access to

the task.
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2.1.1 Resource Speci�cation

Each task operates on a set of resources which are allocated at the time the task is created, and

deallocated at the time of its termination. Di�erent tasks may execute on disjoint or overlapping

sets of resources.

If a resource-request is speci�ed in a spawn statement, then it determines a set of resources

that must be allocated necessarily to the newly created task. In the absence of such a request the

system allocates resources it deems necessary to execute the task.

A resource request may specify the physical machine on which the task is to be executed, along

with additional requirements related to this machine. It is structured as follows:

[MACHINE \("physical-machine-spec\)"]M [\," PROCESSORS\("processor-spec\)"] [other-resource-

spec]...

The physical-machine-spec can be given either directly or indirectly:

� A direct speci�cation identi�es a physical machine by a string with a system-dependent mean-

ing, for example,

MACHINE ( 'TOUCHSTONE DELTA...')

The concept of machine that we use here allows a broad interpretation: for example, it

may denote a speci�c vector machine, a workstation, a parallel architecture, a cluster of

workstations, or any of their components that can be used for the independent execution of

programs. It may also denote a class of machines with the system being free to choose any

speci�c machine from the class.

� An indirect speci�cation, for example MACHINE (TT), provides the identi�cation of a task

(which must exist) or the name of an SDA (which must have been initialized). In this case,

the physical machine is the same as the machine allocated to TT .

For the following, assume that M is the machine on which task T is to be executed. Any

additional resource requirements speci�ed in the spawn statement refer to components of M . We

will actually restrict our discussion here to the processor speci�cation processor-spec, which identi�es

the processor set to be associated with T . Other requirements, such as those for main memory or

�le space, may have to be satis�ed to render the spawn successful.

The processor set can be speci�ed indirectly via a task identi�cation or SDA name, with anal-

ogous semantics as before. For a direct speci�cation, the following options exist:
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� A processor reference. In this case, processor reference identi�es a processor section of M ,

which must be associated with the parent of T .

� An integer expression, yielding a value k identifying the number of processors on machine M

that are needed for the execution of the task.

If the expression is preceded by NEW and M was obtained by an indirect speci�cation

referring to TT , then k \new" processors { in addition to those already associated with TT

{ have to be allocated.

If any of the potential components of a resource request is missing, a system-dependent decision is

made.

We conclude this section with a note on the interface to Vienna Fortran and HPF procedures.

If T is spawned using a Vienna Fortran procedure, say Q, that contains a processor declaration

with a symbolic variable name in a dimension bound expression { for example, PROCESSORS

R(M,N) { then these variables (M and N in the example) must be dummy arguments of Q and

explicitly supplied with proper actual arguments in the spawn statement.

The value respectively yielded by the functions $NP in Vienna Fortran and NUMBER OF PROCESSORS

in HPF is determined by the number of processors allocated to T .

Examples

� T1 = SPAWN Q(K,L, STAT = RS1 )

A task is spawned by activating the task program Q with arguments K and L. The task is

executed on a system-de�ned machine and processor set. The execution of spawn yields an

integer value for the identi�cation of the task which is assigned to the integer variable T1.

Status information regarding the execution of the task is returned in variable RS1.

� T2 = SPAWN Q(K+1,L+1) ON MACHINE ('Intel iPSC860/64...')

Similar to above, but here the machine on which the task is to be executed is speci�ed

explicitly. The number of processors allocated to the task is determined by the system.

� T3 = SPAWN Q(K+1,L-1) ON MACHINE (T2), PROCESSORS(32)

This task is executed on the same machine as T2; it requires 32 processors (which may or

may not coincide with the processors allocated to T2).

� T4 = SPAWN Q(K,L) MACHINE (SELF ), PROCESSORS (SELF )

This task is executed on the same machine and processor set as its parent.
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� T5 = SPAWN QQ(K-1,L,8,4) ON MACHINE (T2), PROCESSORS(NEW 32)

Similar to the last example, but in this case the task requires 32 processors in addition to

those already allocated to T2.

� T6 = SPAWN QQ(K-1,L,8,4) ON MACHINE (T2), PROCESSORS (32)

This task is executed on the same machine as T2. Assuming that QQ contains a processor

declaration of the form PROCESSORS R(M,N) and that the last two dummy arguments of

QQ are M and N , then the corresponding actual arguments determine the shape of R.

� T7 = SPAWN QQ(1,2,4,8) ON MACHINE SELF , PROCESSORSRR(N1:N2,M1:M2,K1:K2)

This task is executed on the same machine as its parent and requests the processor array sec-

tion RR(N1:N2,M1:M2,K1:K2) to be allocated, where RR is a three-dimensional processor

array associated with the parent.

2.2 Task Termination

A task terminates if the execution of the associated subroutine comes to its end, or if its execution

is explicitly ended by a terminate statement. If a task terminates, then all its children terminate

as well.

The terminate statement has the form

TERMINATE [task-expression-list]

A task expression is an integer expression whose value identi�es an existing task. This statement

terminates all tasks speci�ed in the task expression list. The keyword CHILDREN identi�es the

set of all children that were spawned by the executing task and still exist.

If the list is empty, the task executing the statement is terminated.

Examples

TERMINATE T2, T3

This terminates T2 and T3.

TERMINATE

This terminates the task executing this statement (and its children).

TERMINATE CHILDREN

This terminates only the children of the task executing this statement.
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2.3 Task Coordination

Tasks are coordinated by accessing methods in SDA objects. One basic mechanism provided in the

language is the condition clause, which is a boolean guard attached to a public method of an SDA.

This method can then be executed only when the evaluation of the boolean expression yields true;

if necessary, it is blocked until the condition is satis�ed (see Section ??).

Another mechanism is synchronization depending on task termination: WAIT tex1; . . . ; texn,

where the texi are task expressions, blocks the executing task until all tasks associated with the texi

have terminated. If the list of task expressions is preceded by ANY : WAIT ANY tex1; . . . ; texn,

then the executing task waits until any one of the tasks associated with the texi terminates.

Other mechanisms for more sophisticated coordination, including a low-level event-based facility

are currently under investigation and will be added to the language at a later point.

Example

Assume that Q1, Q2, and Q3 are task programs. Then

TT1 = SPAWN Q1(...)

TT2 = SPAWN Q2(...)

TT3 = SPAWN Q3(...)

WAIT CHILDREN

causes the executing task to initiate the tasks TT1, TT2, and TT3, and then wait for the completion

of all three tasks (we assume that no other children exist). This has an e�ect similar to the parbegin-

parend construct used in other languages [?]:

PARBEGIN Q1(...), Q2(...), Q3(...) PAREND

3 Shared Data Abstractions

Tasks, as described in the last section, share information using Shared Data Abstractions

(SDAs). SDAs can be persistent in the sense that they allow program data to be stored in

external storage in a structured way rather than as just a sequence of bytes.

In the following, we distinguish between an SDA type which is a type speci�cation for an SDA

and the SDA object itself. The latter refers to an instance of an SDA type. We also distinguish

between an SDA object and an SDA variable which is an internal program name which denotes the

SDA. A speci�c SDA object may have di�erent internal names, e.g., in di�erent tasks. However, if

an SDA object has been stored externally it will acquire a unique external name. We use the term

SDA for all three concepts interchangeably if the meaning is clear from the context.
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An SDA consists of a set of data structures along with the methods (procedures) which manipu-

late this data. Tasks can share an SDA object and can asynchronously call the associated methods.

However, each call to the SDA has exclusive access to the data in the instance. That is, only one

method call associated with an SDA object can be active at one time. Other request are queued

and the calling tasks blocked until the currently executing method completes its execution. The

execution of individual methods can also be controlled by the use of a condition clause as described

below.

3.1 Speci�cation of SDA Types

The SDA type speci�cation syntax, modeled after the Fortran 90 module syntax, contains two

parts. The speci�cation part consists of all the declarations, including types and variables, while

the subprogram part speci�es the subprograms associated with the SDA type. As in a Fortran 90

module, each subprogram declared within an SDA type has access to all the entities declared in the

SDA type through host association. The SDA type speci�cation extends the Fortran 90 module

speci�cation in several ways, as described in the following subsections.

SDA arguments

The SDA type header consists of the SDA type name along with a list of dummy arguments similar

to those of any Fortran 90 procedure. These arguments can be used to parameterize the internal

data structures of the SDA (including local arrays) The arguments of an SDA must be of intent

IN.

The SDA type header can also include an optional of-clause which is used to specify a special

argument, a type-name. This allows a type to be passed in as an argument to the SDA which can

then be used as a type speci�cation within the SDA speci�cation.

For example, the following code fragment represents the speci�cation part of an SDA type which

provides a stack for communicating data between tasks:

SDA TYPE stack (max) OF (T)

INTEGER max

TYPE (T) :: lifo(max)

INTEGER count

. . .

CONTAINS

. . .

END stack
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Here, max is an integer argument which speci�es the maximum size of the stack whereas T is a

type argument which allows lifo to be declared as an array of type T. Thus, as shown in section ??,

the same SDA type speci�cation can be used to declare a stack of integers, a stack of reals, etc. The

name T designates a type and the only operations allowed on objects of type T are: assignment,

checking for equality and passing them as arguments to methods.

Accessibility of SDA entities

As in the case of a Fortran 90 module, the entities declared inside the SDA type are considered

public unless explicitly declared to be private using the keyword PRIVATE. The default can be

changed by a PRIVATE statement with an empty entity list. Then all entities are private unless

explicitly declared to be public using the keyword PUBLIC.

Note that public variables of the SDA are directly visible and accessible to all tasks having

access to the SDA. However, as in the case of method calls, access to these variables is an atomic

operation, and the task accessing the variable has exclusive access to the whole SDA during the

operation.

SDA Methods

Public methods may be called by tasks having access to the SDA. Each public method can have an

associated condition clause which consists of a logical expression. The logical expression controls the

execution of the method, i.e., a call to the method is blocked until the logical expression evaluates

to true. The logical expression can be constructed using the entities declared in the speci�cation

part of the SDA type along with the dummy arguments of the associated method. However, the

expression is restricted in that its evaluation is not allowed to have any side e�ects which change

the state of the SDA.

The condition clause is attached to the header of the procedure in the subprogram speci�cation

part, as shown in the following code fragment:

SDA TYPE stack (max) OF (T)

INTEGER max

TYPE (T), PRIVATE :: lifo(max)

INTEGER , PRIVATE count

. . .

CONTAINS

SUBROUTINE get (x) WHEN (count .gt . 0)

TYPE (T) x
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x = lifo(count)

count = count - 1

end

SUBROUTINE put (x) WHEN (count . lt . max)

TYPE (T) x

count = count + 1

lifo(count) = x

END

INTEGER FUNCTION cur count

cur count = count

END

. . .

END stack

Thus, in the above code fragment, lifo and count are private whereas the methods cur count,

put and get are public. The method cur count does not have an associated condition clause and

hence can be executed whenever it has exclusive access to the SDA. However, as speci�ed in the

condition block, the subroutine get can only be executed if count is greater than zero. Similarly,

the subroutine put can only be executed if count is less than max.

A public method cannot directly or indirectly call any other public method associated with the

same SDA.

Each SDA has three implicit public methods: INIT, LOAD and SAVE. The �rst two are used

to initialize an SDA while the third is used for saving the current state of the SDA to external

storage for later use. The three methods are described in Section ??.

Distribution of Data

Each SDA may have an optional processors statement, as for example HPF or Vienna Fortran

procedures, which allows the internal data structures of the SDA to be distributed across these

processors. The dummy arguments of the SDA methods can be distributed using the rules appli-

cable to any HPF procedure.

3.2 SDA Declaration and Use

An SDA type name can be used to declare SDA variable names of the type in a manner similar

to that used for Fortran 90 derived type de�nitions. The declaration consists of the name for the
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SDA along with an of-clause if required by the speci�cation. The following code fragment declares

two objects of type stack (see Section ??):

SDA (stack) OF INTEGER :: int stack

SDA (stack) OF TYPE (user type) :: user stack

The of-clause provides a type name to be associated with the type argument of the SDA type.

Thus, int stack denotes an SDA which manipulates integers while user stack will manipulate objects

of a user de�ned type, user type.

The declaration statements create SDA variable names of the speci�ed type in an uninitialized

state. The SDA name must be initialized by associating it with an SDA object before it can be

used. This can be done using the INIT or LOAD methods, as shown below. Only the task declaring

an SDA variable can initialize the variable. An SDA name and the SDA object it denotes exists as

long as the program unit declaring it is active. The object can be made persistent by calling the

SAVE method to transfer the SDA data to external storage.

An SDA variable declaration is not allowed to have the POINTER or ALLOCATABLE at-

tributes. Conceptually an SDA variable is a pointer to an SDA object. As a consequence, all

tasks to which an SDA object is passed have access to the same copy of the object and hence can

communicate with each other using the objecty.

An SDA can be passed as argument to procedures within a task and also to other tasks as they

are being spawned.

Entities declared in an SDA type speci�cation are invoked using the same syntax as used for

derived type. Thus, int stack%max accesses the value of the max variable associated with the SDA

int stack. SDA methods can be invoked using a similar syntax:

sda-name%method-name \("arg-list [\," STAT = stat-variable] \)"

where sda-name is the name of the SDA object, method-name is the name of the method being

invoked and arg-list is the list of arguments required by the method. With any SDA method call,

the user can supply an optional status variable, preceded by the speci�er STAT=. The variable

is set to a non-zero value if the method call fails for any reason (see generic SDAs de�ned later in

this subsection).

As noted before, each SDA has three implicit public methods: INIT, LOAD and SAVE. The

�rst two are used to initialize an SDA name while the last method saves the current state of the

SDA in external storage.

yNote that this does not con
ict with the requirement that all task arguments be of intent IN. The SDA variable
that is passed is intent IN, i.e., its value cannot be changed. However, method calls to the object pointed to by the

variable can change the state of the object.
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Initializing an SDA variable

INIT Method: The INIT method is used to initialize an SDA variable. It is called using the

input arguments as speci�ed in the SDA type speci�cation. The method creates an instance of the

SDA by allocating the required data structures and performing the default initialization. Thus, the

following call,

CALL int stack%INIT( 100, STAT = init status)

initializes the int stack SDA to be of size 100. Again, the STAT variable init status is set to a non-

zero value if the initialization fails for any reason, e.g., if there is not enough memory to allocate

the data structures.

An optional resource-request (as described in Section ?? for task spawning) allows the user to

specify resources to be used for the SDA. The user can also provide a method called INIT in the

SDA type speci�cation which includes code for initializing the internal data structures of the SDA.

This code is executed after the data structures for the instance have been allocated.

LOAD Method: The LOAD method call is used to \load" an SDA object with data which had

been \saved" earlier using the SAVE method. Each call to the LOAD method makes an internal

copy of the external data, leaving the external data untouched. The LOAD call takes a string

(constant or variable) as argument which identi�es a saved SDA. For example, in the following

statement, data saved using the external name stack sav is loaded into the SDA object, user stack.

CALL user stack%LOAD( 'stack sav' , STAT = init status)

First, space for the internal data structures of the object is allocated, and then the data from

the saved SDA is loaded into the SDA object. As in the case of INIT, an optional resource-request

allows the user the speci�cation of resources to be used for the SDA object. Note that the type of

the SDA object must match the type of the saved object. Two SDA types are considered equivalent

if a) the public variables of the SDA types are equivalent in the same sense as the �elds of two

Fortran 90 derived types are equivalent, and b) the method names and arguments of the public

methods of the two types are the same.

Saving an SDA object

The SAVE method allows the user to save the state of the SDA on external storage for later reuse.

The method takes a string (constant or variable) as an optional argument which is used as an

external name for the saved object. The following statement saves the current state of user stack

using the external name 'stack sav'.
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CALL user stack%SAVE( 'stack sav' , STAT = sav status)

If the external name denotes a currently saved object it is overwritten with the new state;

otherwise a new saved object is created. If the variable name had been initialized using a LOAD

call then the string argument may be omitted. In this case, the external name used for the load is

used for the save, overwriting the original data.

Generic SDA variables

The language allows the declaration of generic SDA variables whose type is determined by the data

saved on external storage. Thus, the declaration

SDA :: gen sda

speci�es that gen sda is an SDA name which will be associated with and SDA object of an unnamed

type. Such an variable can only be initialized using the LOAD method and thus inherits the type

of the loaded object. Note that using this facility implies runtime checks to determine whether

a method called with such an object exists and, if it does, whether the argument types match.

However, a judicious use of status variables provides a graceful failure mode.

4 Example

In this section we describe, in relative detail, an example of an application expressed in our language.

The example chosen is the simultaneous optimization of the aerodynamic and structural design of

an aircraft con�guration. By the standards of multidisciplinary optimization (MDO) this is a

comparatively simple example involving just two disciplines. However, it does illustrate some of

the capabilities of our system, as well as show some of the software complexity of this class of

applications, and also the potential for task level parallelism.

The structure of this program is shown in Figure ??. Here rectangles represent tasks, while

ovals represent SDAs. Execution begins with the routine Optimizer, shown in Figure ??, which

creates the three SDAs shown, then spawns the other three tasks shown.

The functions of the three spawned tasks are as follows:

1. GridGen: the grid generator which takes the current geometry (aircraft con�guration) and

produces a three-dimensional aerodynamics grid surrounding it, for use in the 
ow solver.

2. FlowSolver: the 
ow solver which, beginning with the previous 
ow solution, computes a new

solution on the current aerodynamics grid.

3. FeSolver: the �nite element solver which applies forces corresponding to the current 
ow

solution to the structure, to determine new structural defections.
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In the simple variant of this optimization program shown, only one of these three tasks is active

at a time, with control 
ow passing sequentially between tasks. There are however, a number of

alternatives having tasking-level parallelism, as discussed at the end of this section.

Each of the tasks takes data from one or more SDAs, performs a sequence of computations on

it, then inserts the results into one or more other SDAs. For example, the grid generator takes as

input the current surface geometry, which is �eld de
ected in SDA SurfaceGeom. It then computes

with this data, producing a new aerodynamics grid, which it inserts into SDA AeroGrid. Similarly,

the 
ow solver uses the current grid and previous solution in AeroGrid to produce a new 
ow

solution put in AeroGrid. The structure of the grid generator code is shown in Figure ??; we omit

the code for the 
ow-solver.

The structure of the two SDAs used here is shown in Figures ?? and ??. The SurfaceGeom

SDA contains the method GetFeModel, which returns a new �nite element model for the aircraft.

We could have created a separate task �nite element model to do this, but in this case, generating

the �nite element model is trivial, so it can simply be a method in the SurfaceGeom SDA.

Analogously, AeroGrid contains the method, SurfaceForces, which computes the pressure loads

and viscous stresses acting on the aircraft surface. Logically, one could think of this as either a

�lter operating on the output of the 
ow solver, or as a part of the 
ow solver. However, the former

viewpoint is perhaps more natural, since the operation of extracting surface forces is the same,

independent of the 
ow solver used or the use being made of the the surface forces.

The third spawned task is the �nite element solver, shown in Figure ??. This task uses the sur-

face forces in the AeroGrid, together with the �nite element model in SurfaceGeom to compute new

de
ections of the aircraft con�guration. It also computes the change between the new de
ections

and previous de
ections, which it inserts in the SDA StatusRecord.

The SDA StatusRecord is shown in Figure ??. It is used to keep track of the current status of

the optimization process, the current drag prediction, and so forth. Control 
ow circulates in the

inner loop of FeSolver, GridGen, FlowSolver until the convergence criterion is met. At this point,

the FeSolver set the Done variable in the Status SDA allowing the Optimizer to take control. The

latter then decides whether to terminate the program or to produce a new base geometry which

when put in SurfaceGeom starts a new round of the inner loop.

5 Related Work

Task management has been a topic of research for several decades, particularly in the operating

systems research community. A good survey of the issues can be found in [?]. However, there has

not been much attention given to the mechanisms required for managing control parallel tasks,

which may themselves be data parallel. In this section we discuss some of these approaches.
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Fortran M [?] extends Fortran 77 with a set of features that support message-passing, accord-

ing to a strictly enforced discipline. Processes { program modules encapsulating data and code that

are executed concurrently { can be combined via channels; each channel establishes a one-to-one

connection between typed ports, essentially representing a message queuez. Communication is per-

formed by sending and receiving from ports. Processes are activated by executing a process block {

a PARBEGIN/PAREND like construct { or by creating multiple instances in a process loop. The

language has constructs for controlling the location of process executions and distributing data

in an HPF-like manner. By imposing a FIFO discipline on message queues and guaranteeing a

sequential semantics for output arguments determinism is enforced.

Fortran M can be used to create and coordinate threads in a clean and structured way. How-

ever, the relatively low level of abstraction associated with the message-passing paradigm, together

with the structure imposed on the use of channels and ports for the sake of achieving determin-

ism sometimes leads to di�culties expressing simple and useful communication structures. Such

examples include producer-consumer problems with multiple producers and consumers accessing a

bounded bu�er, or the variants of the readers-writers problem.

The Fx Fortran language extensions developed at CMU [?, ?] include parallel sections that

allow the concurrent activation of subroutines as tasks. Tasks communicate by sharing arguments.

Arguments can be passed to a task at the time of its activation, or received from a task when it

terminates. Each call that activates a task must be accompanied by input and output directives that

specify the shared objects. This provides the compiler with complete information on the required

communication.

Fx is well suited to an environment where tasks need to communicate only at the time of spawn-

ing and termination, and where nested task-parallelism is not required. If tasks must communicate

during their execution, subroutines may have to be split at synchronization points to obtain smaller

program units that �t into this scheme. Moreover, this would clearly induce task-spawning over-

head.

LINDA [?] provides a virtual shared tuple space, to which read and write operations can be

applied. It represents a simple and easily usable parallel programming paradigm. However, LINDA

lacks the modularity that is required for structuring multidisciplinary applications, and does not

allow su�cient control of task execution and resource allocation.

SVM Fortran [?] is a set of extensions for Fortran 77 intended to program shared virtual

memory systems. among a large number of features, it provides support for �ne-grained control

parallelism in a shared memory paradigm along with mechanisms to synchronize and coordinate

these tasks.

Other approaches which provide support for managing task parallelism at a high level include

zIn addition, many-to-one communication can be expressed.

15



occam [?], PVM [?], CC++ [?] and Strand [?]. Most of these approaches do not address the issue

of integrating task and data parallelism.

6 Conclusion

Complex scienti�c applications, such as multidisciplinary optimization, provide opportunities for

exploiting multiple levels of parallelism; however, they also raise complex programming issues.

In this paper, we have presented language extensions which not only allow the speci�cation of

parallelism but also provide support for software engineering issues which arise when integrating

codes from individual disciplines into a single working application. The user has to explicitly specify

tasks and manage concurrent tasks. We presume that data parallelism within these tasks will be

speci�ed using an HPF-like approach. The user controls the sharing of information between these

tasks through Shared Data Abstractions, which allow the task interfaces to remain independent of

each other.

We are in the process of building a prototype implementation and will report the results of

these e�orts in future papers.
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Figure 1: MDO Application
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PROGRAM Optimizer
SDA (SurfaceGeom) Surf
SDA (AeroGrid) Grid
SDA (StatusRecord) Status
TYPE (surface) geom

! { read input arguments and initialize SDAs

CALL Surf%INIT
CALL Grid%INIT
CALL Status%INIT

! { spawn tasks

SPAWN FeSolver (Surf, Grid, Status, ...)
SPAWN GridGen (Surf, Grid, ...)
SPAWN FlowSolver(Grid, ...)

! { initialize geometry

geom = GenBaseGeom(...)
CALL Surf%PutBase(geom)

! { outer loop

CALL Status Drag = Status DragDi� = Drag
DO WHILE (DragDi� .gt. Epsilon)

geom = ImproveGeom(geom)
CALL Surf%PutBase(geom)
CALL Status%GetDone
OldDrag = Drag
Drag = Status%drag
DragDi� = Drag-OldDrag

END DO

! { save SDAs if necessary

! { kill all tasks

TERMINATE

STOP

END

Figure 2: Main program
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TASK CODE GridGen(Surf, GridSDA, ...)
SDA (SurfaceGeom) Surf
SDA (AeroGrid) GridSDA
TYPE (surface) geom
TYPE (FlowGrid) grid

DO WHILE (.TRUE .)
CALL Surf%GetDe
ected(geom)
grid = GenAeroGrid(geom)
CALL GridSDA%Putgrid(grid)

END DO

END GridGen

Figure 3: Grid generator
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SDA TYPE SurfaceGeom
TYPE (surface) base
TYPE (surface) de
ected
TYPE (fe) FeModel

LOGICAL De
ectFull = .FALSE .
LOGICAL FeFull = .FALSE .
PRIVATE base, de
ected, FeModel,De
ectFull, FeFull

CONTAINS

SUBROUTINE PutBase(b)
TYPE (surface) b
base = de
ected = b
CALL GenFeModel(b, FeModel)
De
ectFull = .TRUE .
FeFull = .TRUE .

END

SUBROUTINE PutDe
ected(d) WHEN .NOT . De
ectFull
TYPE (surface) d
De
ectFull = .TRUE .
de
ected = d

END

SUBROUTINE GetDe
ected(d) WHEN De
ectFull
TYPE (surface) d
De
ectFull = .FALSE .
d = de
ected

END

SUBROUTINE GetFeModel(f) WHEN FeFull
TYPE (fe) f
f = FeModel
FeFull = .FALSE.

END

. . .
END SurfaceGeom

Figure 4: Surface Geometry SDA
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SDA TYPE AeroGrid ( s )
SDA (StatusRecord) s
TYPE (FlowGrid) grid
TYPE (FlowSoln) solution

LOGICAL GridFull = .false.
LOGICAL NewFlow = .false.
PRIVATE grid, solution, GridFull, NewFlow

CONTAINS

SUBROUTINE init
! { code to initialize solution

END init

SUBROUTINE PutFlow(s)
TYPE (FlowSoln) s
solution = s
NewFlow = .TRUE.

END

SUBROUTINE GetFlow(s)
TYPE (FlowSoln) s
s = solution

END

SUBROUTINE GetSurfForces(f) WHEN NewFlow
TYPE (SurfForces) f
REAL drag
f = GenForces(FlowSoln)
drag = SurfIntegral(f)
s%drag = drag

END

SUBROUTINE PutGrid(g) WHEN .NOT . Gridfull
. . .

END

SUBROUTINE GetGrid(g) WHEN GridFull
. . .

END

. . .
END AeroGrid

Figure 5: AeroGrid SDA
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TASK CODE FeSolver(Surf, GridSDA, Status, ...)
SDA (SurfaceGeom) Surf
SDA (AeroGrid) GridSDA
SDA (StatusRecord) Status
TYPE (fe) FeModel
TYPE (SurfForces) force

CALL Surf%GetFeModel(FeModel)
DO WHILE (.TRUE .)
CALL Grid%SurfaceForces(force)
load = interp(force, FeModel)
solve(load, FeModel, de
ect)
IF ( de
ect .GT. tol ) THEN
CALL Status%SetDone
CALL Surf%GetFeModel(FeModel)

ELSE

CALL Surf%PutDe
ected(de
ect)
ENDIF

END DO

END FeSolve

Figure 6: Finite Element Solver

SDA TYPE StatusRecord
REAL drag
LOGICAL Done = .FALSE .
PRIVATE ConvError, Done

CONTAINS

SUBROUTINE GetDone WHEN Done
Done = .FALSE .

END GetDone

SUBROUTINE SetDone WHEN .NOT . Done
Done = .TRUE .

END SetDone

END StatusRecord

Figure 7: SDA for Status
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